Real root finding for low rank linear matrices
نویسندگان
چکیده
The problem of finding low rank m × m matrices in a real affine subspace of dimension n has many applications in information and systems theory, where low rank is synonymous of structure and parcimony. We design a symbolic computation algorithm to solve this problem efficiently, exactly and rigorously: the input are the rational coefficients of the matrices spanning the affine subspace as well as the expected maximum rank, and the output is a rational parametrization encoding a finite set of points that intersects each connected component of the low rank real algebraic set. The complexity of our algorithm is studied thoroughly. It is essentially polynomial in ( n+m(m−r) n ) where r is the expected maximum rank; it improves on the state-of-the-art in the field. Moreover, computer experiments show the practical efficiency of our approach.
منابع مشابه
Low-Rank Matrices on Graphs: Generalized Recovery & Applications
Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of high...
متن کاملRandomized Preprocessing of Homogeneous Linear Systems of Equations
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations, which leads to significant acceleration of the known algorithms in the cases of both general and structured input matrices. E.g., in the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic dec...
متن کاملTR-2009008: Randomized Preprocessing of Homogeneous Linear Systems of Equations
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations, which leads to significant acceleration of the known algorithms in the cases of both general and structured input matrices. E.g., in the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic dec...
متن کاملTR-2009014: Randomized Preprocessing of Homogeneous Linear Systems
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our randomized algorithms and extend our approach to solving nonsingular line...
متن کاملRandomized Preprocessing of Homogeneous Linear Systems
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our randomized algorithms and extend our approach to solving nonsingular line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.05897 شماره
صفحات -
تاریخ انتشار 2015